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SUMMARY  The Navigational Programming (NavP) method-
ology is based on the principle of self-migrating computations. It
is a truly incremental methodology for developing parallel pro-
grams: each step represents a functioning program, and each in-
termediate program is an improvement over its predecessor. The
transformations are mechanical and straightforward to apply. We
illustrate our methodology in the context of matrix multiplica-
tion, showing how the transformations lead from a sequential
program to a fully parallel program. The NavP methodology is
conducive to new ways of thinking that lead to ease of program-
ming and high performance. Even though our parallel algorithm
was derived using a sequence of mechanical transformations, it
displays certain performance advantages over the classical hand-
crafted Gentleman’s Algorithm.
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1. Introduction

We show how our Navigational Programming (NavP)
methodology can be applied to a sequential algorithm
for matrix multiplication to obtain a series of programs
that represent incremental steps in exploiting paral-
lelism in the original algorithm. The final incremental
program in the series  a fully parallel program for ma-
trix multiplication—is similar to the classical Gentle-
man’s algorithm, but has performance advantages over
Gentleman’s algorithm which we describe.

In NavP, migrating computations are the compos-
ing elements of a distributed parallel program. The
code transformations in NavP  distributing the data
and inserting corresponding navigational commands,
pipelining, and phase shifting — can be used to incre-
mentally turn a sequential program to a distributed
sequential computing (DSC) program, and later to a
distributed parallel computing (DPC) program. These
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transformations can be applied repeatedly, or in a hi-
erarchical fashion, as illustrated below. The benefits of
the NavP incremental parallelization include: (1) Ev-
ery program is a result of applying the mechanics of one
of the transformations and is a natural and incremental
step from its predecessor. As a result, no abrupt change
in code will happen between any consecutive steps; (2)
Every intermediate program is an improvement from
its predecessor. If program development is limited by
time or resources, any one of the intermediate programs
can be taken as production code; (3) The transforma-
tions are highly mechanical and straightforward to use,
and yet the resulting parallel programs are elegant and
efficient.

We briefly describe the NavP methodology in
Sect. 2. Section 3 summarizes the application of NavP
to the classical problem of matrix multiplication; for
more details and the complete pseudocode at each in-
termediate step, the interested reader is referred to our
conference paper [1]. Section 4 contains performance
data. We present a detailed comparison of the paral-
lel algorithm derived from our NavP solution with the
classic Gentleman’s algorithm in Sect. 5.

2. Navigational Programming

Navigational Programming (NavP) is a methodology
for distributed parallel programming based on the use
of self-migrating computations. In NavP code, a pro-
grammer inserts navigational commands, i.e., hop()
statements, to migrate computation locus in order to
access remotely distributed data and spread out com-
putations. Small data that is “carried” by the moving
computation is put in “agent variables,” whereas large
data that stays on a computer is held by “node vari-
ables.” An agent variable is private to a computation
thread, and is available to the thread wherever it mi-
grates. The cost of a hop() is mainly spent in shipping
the data stored in agent variables. The synchroniza-
tion among different migrating computations is done
through “events” (signalEvent() and waitEvent()).
Details on how to use the MESSENGERS system can be
found in the manual [2].

NavP provides a different, view of distributed com-
putation from the classical SPMD view. The SPMD
view describes distributed computations at stationary
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Fig.1 The code transformations in NavP. (a) Sequential. (b)
DSC. (c) Pipelining. (d) Phase shifting.

locations, whereas the NavP view describes a com-
putation following the movement of its locus. The
three transformations under the NavP view are de-
picted in Fig. 1. Here and throughout the paper, ar-
rows indicate hop() operations. The basic idea be-
hind the transformations is to spread out computations
using self-migrating computation threads as soon as
possible without violating any dependency conditions.
(1) DSC Transformation: Large data is distributed
among the PEs (processing elements), and hop() state-
ments are inserted into the sequential code in order for
the computation to “chase” large data while carrying
small data. The DSC Transformation is schematically
depicted using Figs. 1(a) and (b). The resulting pro-
gram performs “Distributed Sequential Computing,”
which is more conveniently termed DSC. The imme-
diate benefit of DSC is that, with a reasonable amount
of work, a sequential program can be used to efficiently
solve large problems that cannot fit in the main mem-
ory of one computer. By using a network of worksta-
tions, the DSC program has completely removed paging
overhead by trading it against a modest amount of net-
work communication [3]. DSC also serves as the start-
ing point of parallel program development in NavP.
(2) Pipelining Transformation: This transforma-
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tion is depicted using Figs. 1(b) and (c). The basic idea
is to pipeline multiple DSC computation threads. Syn-
chronization may be necessary to keep the DSC threads
ordered correctly in the pipeline. (3) Phase-shifting
Transformation: Sometimes the dependency among
different computations allows different DSC threads to
enter the pipeline from different locations. In these sit-
uations, we can phase shift the DSC threads to achieve
full parallelism, as depicted in Figs. 1(c) and (d).

The NavP transformations can be systematically
applied repeatedly or hierarchically in different dimen-
sions of a network of PEs, as will be shown with matrix
multiplication later in this paper. At each step, we have
a fully functional implementation of matrix multiplica-
tion that is an improvement of the previous step. The
result of the final step has a resemblance to the clas-
sical Gentleman’s Algorithm, but there are important
differences as described in Sect. 5.

3. Incremental Parallelization of Matrix Mul-
tiplication

Matrix multiplication is a fundamental operation of
many numerical algorithms. Pseudocode for sequen-
tial matrix multiplication is listed in Fig. 2. Through-
out the paper, we assume N is the order of the
square matrices involved. It is clear that the com-
putation of each entry of the matrix C is indepen-
dent of all other entries of C, and therefore there are
N? updatings that can be done in parallel. Never-
theless, exploiting the abundant parallelism in ma-
trix multiplication is not as straightforward as one
might think. Suppose we parallelize the two outer
loops using the popular doall notation, as shown in
Fig. 3. We can get, for example, two concurrent state-
ments run by two PEs: C(1,1)+ = A(1,1) *B(1,1) and
C(1,2)+ = A(1,1) *B(1,2). These two parallel execu-
tions both need the entry A(1,1). If the requests for
A(1,1) from the two PEs arrive at the same time at
the PE that hosts A(1, 1), contention happens. On the
other hand, if we cache multiple copies of A(1,1) on
the PEs that require it, this solution is not scalable.
Gentleman conducted research into the data movement
required for matrix multiplication, and his analysis con-
firmed that data movement and not arithmetic oper-
ations — is often the limiting factor in the performance
of algorithms [4], [5].

(1) do i=0,N-1

(2)  do j=0,N-1

(3) t =0.0

(4) do k=0,N-1

(5) t += A(i,k) = B(k,j)
(6) end do

7 C(i,j) =t

(8) end do

(9) end do

Fig.2 Pseudocode for sequential matrix multiplication.
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(1) doall i=0,N-1
(2) doall j=0,N-1

(3) Cc(i,j) = 0.0

(4) do k=0,N-1

(5) C(i,j) += A(i,k) * B(k,j)
(6) end do

(7 end doall
(8) end doall

Fig.3 Pseudocode for parallel matrix multiplication using
doall.

We provide a solution that does not trigger con-
tention (i.e., we avoid the situation where multiple PEs
get matrix entries from a single PE at the same time),
and does not use data replication (i.e., at any given
time, there is only one copy of any matrix entry). For
simplicity, we describe the problem and our solution at
a fine granularity level. That is, we assume N == P,
where P is either the number of PEs in a 1D processor
network or the order of a 2D processor network. To ex-
tend our solution to a coarser level, we would treat each
element (e.g., CO1 or A21) as a sub-matrix block, instead
of an entry of the matrix. Our solution is incremental
and involves applying a series of transformations, ob-
taining a algorithm at each step. The pseudocode for
each algorithm in the series is given in our conference
paper [1]; here, because of page limitations, we simply
give a summary.

We first apply the DSC Transformation to sequen-
tial matrix multiplication, as depicted in Fig. 4(a).
The essence of this DSC transformation is to distribute
the computation in the j dimension. The PE net-
work is 1D in which each PE has a unique identi-
fier HnodeID = 0,1,...,N — 1 from west to east. Thick
boxes contain node variables on different machines, and
thin boxes carry agent variables. Next, we apply the
Pipelining Transformation to the DSC code obtained
from the last step, as depicted in Fig. 4(b). Each row
of matrix A is assigned to a computation thread, and
these threads are “injected,” or spawned, into the PE
pipeline in turn, and follow each other in the network
to compute the corresponding C entries. We then apply
the Phase-shifting Transformation to achieve full DPC,
as depicted in Fig. 4(c). This is possible because each
row of A, though needed on all three PEs, can start
its computation from any PE. At this point we have
a matrix multiplication algorithm that is fully parallel,
except that it only uses one dimension (the j dimen-
sion) rather than two.

To exploit the i dimension as well, we next
introduce a 2D network in which each PE has
a unique 2D identifier (HnodeID,VnodeID), where
HnodeID =0,1,...,N—1 from west to east, and
VnodeID = 0,1, ...,N — 1 from north to south, and ap-
ply the DSC Transformation in the second dimension,
as depicted in Fig. 4(d). We then apply the Pipelin-
ing Transformation in both dimensions, as depicted in
Fig. 4(e). A pair of A and B entries can move on along

their pipelines respectively as soon as they finish com-
puting and contributing the corresponding C entry. A
producer BCarrier needs to make sure that the B en-
try produced by its predecessor in the pipeline is con-
sumed before it puts the B entry it carries in place.
Finally, we apply the Phase-shifting Transformation in
both dimensions to achieve full parallelization, as de-
picted Fig. 4(f).

In Fig. 4, each sub-matrix block, e.g., A10 or C11, is
called a “distribution block” in our implementation, as
it is a basic unit of data distribution on a PE. To achieve
better performance from a block algorithm, a further
level of matrix decomposition is used [6]. A distribu-
tion block is decomposed into “algorithmic blocks,” and
each algorithmic block of A or B is carried by a migrat-
ing thread (i.e., ACarrier or BCarrier). If we “zoom
in” to the physical node (HnodeID = 1, VnodeID = 1) in
Fig. 4(f) (assuming the entire PE network is the upper-
left 2 x 2 processors), we can see algorithmic blocks as
depicted by lowercase letters (e.g., ab7 or c46) in Fig. 6
of Sect. 5.1. As an example, the distribution block of
C11 in Fig. 4(f) is decomposed into algorithmic blocks
contained in the thick box (which indicates a physical
node) in Fig. 6. Our sequential and MPI implementa-
tions described below use algorithmic blocks as well.

Pseudocode for DPC in both dimensions is listed
in Fig. 5. The matrices are initially distributed such
that A(4,j), B(, j) and C(i, j) (initialized to 0) are on
node(i, j). In this pseudocode, A and B indicate node
variables, whereas mA and mB represent agent variables.
In our NavP programs, we adapt a naming convention
of starting an agent variable’s name with a lowercase m.
Matrix A is loaded into agent variable mA and carried
by the migrating thread. node(j) maps to the PE that
hosts column j of matrices B and C. Every time the
thread of computation hops back to node(0), it will pick
up a different row of matrix A for the computation of the
loop over j. Detailed descriptions and the pseudocode
for all individual incremental steps can be found in our
conference paper [1].

4. Performance Data

We have implemented parallel matrix multiplication us-
ing both NavP and message passing. The NavP system
used was MESSENGERS (Version 1.2.05 Beta) developed
at the Donald Bren School of Information & Computer
Sciences, University of California Irvine [2]. The mes-
sage passing system used was LAM 7.0.6 from Indiana
University [7]. The ScaLAPACK used was version 1.7
from the University of Tennessee, Knoxville and the
Oak Ridge National Laboratory [8]. The C compiler
used was GNU gcc-3.2.2, and the Fortran compiler used
was GNU g77-3.2.2. The performance data was ob-
tained from SUN workstations (SUN Blade 100, CPU:
502 MHz SUNW UltraSPARC-IIe, OS: SunOS Release
5.8) with 256 MB of main memory, 1GB of virtual mem-
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From sequential to parallel matrix multiplication. (a) DSC. (b) 1D pipelining.

(¢) 1D phase shifting. (d) 2D DSC. (e) 2D pipelining. (f) 2D phase shifting.

(1) do mj=0,N-1

(2) hop (node (0,m3j))

(3) inject (spawner(mj))

(4) end do

(1) spawner(int mj)

(2) do mi=0,N-1

(3) hop (node (mi,mj))

(4) signalEvent (EC(mi,mj))

(5) inject (ACarrier(mi,mj))

(6) inject (BCarrier (mi,mj))

(7 end do

(8) end

(1) ACarrier(int mi, int mk)

(2) mA = A

(3) do mj=0,N-1

(4) hop (node (mi, (N-1-mi-mk+mj) %N)

(5) waitEvent (EP (mi, (N-1-mi-mk+mj)%N))
(6) C+=mA x B

(7) signalEvent (EC(mi, (N-1-mi-mk+mj)%N))
(8) end do

(9) end

(1) BCarrier(int mk, int mj)

(2) mB = B

(3) do mi=0,N-1

(4) hop (node ((N-1-mj-mk+mi)%N,mj))

(5) waitEvent (EC((N-1-mj-mk+mi)%N,mj))
(6) B = mB

(7) signalEvent (EP ((N-1-mj-mk+mi) %N, mj))
(8) end do

(9) end

Fig.5 Pseudocode for matrix multiplication with full DPC in
both dimensions.

ory, and 100Mbps of Ethernet connection. These work-
stations have a shared file system (NFS).
When the total memory use on a PE reaches or ex-

ceeds the available physical memory, performance be-
comes poor. This is because of paging overhead. For
some algorithms, when the working set exceeds the
physical memory, thrashing happens and the perfor-
mance is completely unacceptable. In distributed com-
putation, the data of a sub-problem may fit in the mem-
ory of a machine completely even if the entire problem
is too large for one computer. In order to obtain fair
speedup numbers, we calculate sequential timing for
large problems using least squared curve fitting with a
polynomial of order 3 using performance numbers col-
lected with small problems.

In all tables, “Matrix order” means the order of
matrices A, B, or C. “Block order” means the order of
the algorithmic blocks. Table 1 lists the performance
data for NavP and ScaLAPACK on a 1D PE network
of three machines. It can be seen that the performance
improves as we go from NavP DSC to NavP pipelining
and then to NavP phase shifting. For small problems,
NavP 1D DSC is only marginally slower than the corre-
sponding sequential execution, but as the problem size
grows it becomes faster. This can be seen by compar-
ing the data in the “NAVP (1D DSC)” column with the
unstarred data in the “Sequential” column (i.e., the ac-
tual data, as opposed to the data derived from curve
fitting.) Table 2 indicates that with several networked
computers DSC performs almost as fast as the sequen-
tial program running with enough main memory, and it
is significantly faster than the sequential program pag-
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Table 1  Performance of matrix multiplication on 3 PEs.

Sequential | NavP (1D DSC) | NavP (1D pipeline) | NavP (1D phase) | ScaLAPACK#
Matrix | Block Time Speed Time Speed Time Speed Time Speed Time Speed
order | order (s) up (s) up (s) up (s) up (s) up
1536 128 65.44 1.00 67.22 0.97 27.72 2.36 24.55 2.67 26.80 2.44
2304 128 219.71 1.00 229.45 0.96 91.03 2.41 81.23 2.70 82.83 2.65
3072 128 520.30 1.00 543.91 0.96 205.87 2.53 189.50 2.75 211.45 2.46
4608 128 1934.73 (1745.94%) 1.00 1809.73 0.96 688.18 2.54 653.64 2.67 767.91 2.27
5376 128 3033.92 (2735.69%) 1.00 2926.24 0.93 1151.07 2.38 990.05 2.76 1173.46 2.33
6144 256 5055.93 (4268.16%) 1.00 4697.32 0.91 1811.77 2.36 1554.99 2.74 1984.18 2.15

(*) Obtained from least squared curve fitting and used in calculating speedup.
(*) Scal.LAPACK uses a logical LCM hybrid algorithmic blocking technique, not controlled by users [6].
Table 2  Performance of matrix multiplication on 8 PEs.

| | Sequential | NavP (1D DsO) |
Matrix | Block Time Speed Time Speed
order | order () up () up
9216 | 128 | 36534.40 (13921.50%) | 1.00 | 14950.42 | 0.93

(*) Obtained from least squared curve fitting and used in
calculating speedup.

ing using virtual memory. With N = 9216, the total
memory usage is about 1GB, but each of our machines
has only 266 MB of main memory.

Tables 3 and 4 list the performance data for MPI,
NavP, and ScaLAPACK on a 2D PE network of nine
machines. Again, performance improves as we hierar-
chically apply the three NavP transformations in the
second dimension.

In both 1D and 2D cases, our DSC and pipelin-
ing programs achieve high performance. This can
be attributed to the use of algorithmic blocks. The
RowCarriers or ACarriers, each of which responsible
for the computation of a row of algorithmic blocks or an
algorithmic block, can spread out their computations
to the entire network earlier than if a full distribution
block on a PE has to be computed before these carriers
can hop out.

The MPT implementation used for the comparison
was Gentleman’s Algorithm modified to use block par-
titioning of matrices, and with pointer swapping used
to avoid unnecessary local data copying [1]. ScaLA-
PACK uses a logical LCM hybrid algorithmic blocking
technique [6], so the block orders in the tables do not
apply to the ScaLAPACK numbers.

The performance data indicates that the NavP im-
plementation achieves higher speedup than the MPI
implementation. It would be possible to improve the
performance of the MPI code by subtle fine-tuning at
a cost of considerably more programming effort. Some
ways that this could be done are described in Sect. 5.
Nevertheless, the data makes it clear that the NavP
program is faster than a straightforward implementa-
tion of Gentleman’s Algorithm and competitive with a
highly tuned version.

5. Comparison of Implementations

Not only does NavP bring in a new way of thinking,
but the NavP implementation is also superior in per-

formance. In the following, we compare our solution
with message passing and try to explain why NavP is
easier to use and faster than message passing.

5.1 Communication

In all of our sequential, NavP, and MPI implementa-
tions, we use block algorithms. The C matrix is parti-
tioned into algorithmic blocks, and each physical node
is assigned to a number of such blocks. The matrices A
and B are partitioned in the same way as C. Figure 6
depicts an example in which the large thick box repre-
sents a physical node that hosts C algorithmic blocks
(e.g., c44, c45, and etc.) and algorithmic blocks of A
and B (e.g., a40, ab7, or b04, b75, and etc.) come from
west and north neighbors to participate in the compu-
tations that will contribute to the C algorithmic blocks.
The benefit of this block algorithm is that by adjust-
ing the order of algorithmic blocks, we can obtain the
best cache and communication performance for our se-
quential, NavP, and MPI implementations. (For the se-
quential program, the block algorithm improves cache
performance only.)

b04 b75 b66 b57
cl4 c45 c46 ca7
41 5 6 7
a40
c54 €55
4 42
as50 a57
c64
Ao e ) 3
a60 ab7 a66
c74
I I R O N A
ar70 ar? ar6 ars

Fig.6 One scenario of matrix multiplication using algorithmic
blocks on a physical node.

We use a scenario depicted in Fig. 6 to explain how
the NavP code can efficiently utilize CPU cycles and
hide some of the communications. Let us suppose that,
after the algorithmic block b04 carried by a BCarrier
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Table 3 Performance of matrix multiplication on 2 x 2 PEs.

Sequential | MPI (Gentleman) | NavP (2D DSC) | NavP (2D pipeline) | NavP (2D phase) | ScaLAPACK#
Matrix | Block Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed
order | order (s) up (s) up (s) up (s) up (s) up (s) up
1024 128 19.49 1.00 6.02 3.24 7.63 2.55 5.88 3.31 5.54 3.52 5.23 3.73
2048 128 158.51 1.00 50.99 3.11 50.59 3.13 42.61 3.72 41.54 3.82 45.53 3.48
3072 128 520.30 1.00 157.53 3.30 158.06 3.29 144.09 3.61 137.39 3.79 156.27 3.33
4096 128 1281.58 (1238.21%) 1.00 367.04 3.37 362.73 3.41 328.98 3.76 321.70 3.85 417.83 2.96
5120 128 2727.86 (2373.32%) 1.00 733.91 3.23 792.23 3.00 757.67 3.13 624.87 3.80 907.16 2.62

(*) Obtained from least squared curve fitting and used in calculating speedup.
(*) Scal.LAPACK uses a logical LCM hybrid algorithmic blocking technique, not controlled by users [6].
Table 4 Performance of matrix multiplication on 3 x 3 PEs.

Sequential | MPI (Gentleman) | NavP (2D DSC) | NavP (2D pipeline) | NavP (2D phase) | ScalLAPACK#
Matrix | Block Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed
order | order (s) up (s) up (s) up (s) up (s) up (s) up
1536 128 65.44 1.00 10.97 5.97 13.66 4.79 9.18 7.13 8.21 7.97 8.08 8.10
2304 128 219.71 1.00 29.95 7.34 39.53 5.56 29.93 7.34 26.74 8.22 29.39 7.48
3072 128 520.30 1.00 82.25 6.33 86.52 6.01 66.94 7.77 62.36 8.34 70.92 7.34
4608 128 1934.73 (1745.94%) 1.00 241.92 7.22 268.41 6.50 220.28 7.93 205.68 8.49 255.87 6.82
5376 128 3033.92 (2735.69%) 1.00 | 437.27 6.26 421.78 6.49 360.77 7.58 323.67 8.45 398.50 6.86
6144 256 5055.93 (4268.16%) 1.00 637.79 6.69 745.18 5.73 584.85 7.30 510.29 8.36 635.36 6.72

(*) Obtained from least squared curve fitting and used in calculating speedup.
(*) Sca.LAPACK uses a logical LCM hybrid algorithmic blocking technique, not controlled by users [6].
arrives, the north neighbor becomes slow for some rea- In MPI, the situation is quite different. The

son and delays the BCarriers of b75, b66, and b57 from
hopping into the node; meanwhile, let us also imagine
that the west neighbor continues to run at a normal
speed, allowing ACarriers carrying a40, ab7, a66, and
a75 and their followers ab0, a67, a76, a60, a77 and a70
hop in as usual. The ACarrier of a40 will be put to
sleep after it computes with b04 to contribute to c44,
because the event to be signaled by the BCarrier of
b75 is not posted yet. Now the CPU cycles will be
used for computations that contribute to c54, c64, and
c74, as the corresponding ACarriers hop in. At this
time, assuming the BCarriers of b75, b66, and b57 all
arrive, the ACarrier of a40 will be signaled and finish
the computations that contribute to c45, c46, and c47.
(In MESSENGERS, waitEvent(E) falls through when the
event E is signaled before the waitEvent(E) is posted.)
So the computations actually happen in the order that
is marked by numbers in bold font in Fig. 6. (This
does not include the computations involving those al-
gorithmic blocks of B that are already on this PE at the
beginning of this scenario.) Since the CPU is mostly
busy doing computations as the data they need (i.e.,
the corresponding algorithmic block pairs of A and B)
become available, the communication overhead of the
algorithmic blocks is mostly hidden from being seen in
the overall elapsed time.

The run-time task scheduling described above is
handled by the queuing mechanisms built into the MES-
SENGERS daemon. Thus it is handled at the system
level, invisible to the application programmers. Tt is
the NavP view that allows us to focus on describing the
application level computations following their move-
ment and to factor out the functionality associated with
scheduling — code that describes behaviors at fixed loca-
tions and put it into the MESSENGERS daemon code.

straightforward way to program the block implemen-
tation is to have a loop over all the algorithmic blocks
of C that are hosted on a particular physical node. The
loop introduces an artificial sequential order to the com-
munications and computations, even though they are
actually independent of each other. This artificial se-
quential order may result in slower performance in some
scenarios. For example, if the load in the network is
dynamically changing due to other users sharing some
of the PEs or subnet and if the change is distributed
randomly, the MPT implementation may be unable to
adapt to the change efficiently because CPU cycles are
wasted while waiting for a particular sub-matrix pair
to arrive. In contrast, the NavP solution is able to
“absorb” the impacts, as described above. Even when
the load in the network is perfectly homogeneous and
balanced, the best order in which to perform the sub-
computations depends on the application. In matrix
multiplication, it is likely to be a skewed order that is
neither row-major nor column-major and may be dif-
ficult to describe with nested loops. Any predefined
order that is not carefully chosen may cause unneces-
sary “synchronization cuts” in the network that slow
down the execution. In contrast, the NavP solution
performs computations as the data they need becomes
available, rather than using a predefined order.

There are several ways to remove the artificial se-
quencing of computation in the MPI implementation.
One way is to mimic the functionality of the MESSEN-
GERS daemon by adding task-scheduling logic to the
MPI application code. Because there is not a uniform
way of combining task scheduling code and application
code, this would need to be done separately for each
application. So this shifts the burden of task schedul-
ing from the system to the application programmer and
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makes the programming task much more complicated.
Another approach would use a compiler that performs
dependency analysis for the code segments that are ex-
ecuted on a local node and assigns independent com-
putations to different threads. This solution could be
made to work, and it would be general enough to han-
dle future applications. However, this solution involves
writing a parallelizing compiler to achieve what is gen-
erally considered to be a manual programming method.
And the compiler needs to be able to understand the be-
haviors of blocking and non-blocking send and receive
and their use of buffers in MPIL.

Yet another approach is to use parallel directives,
such as those in HPF [9], UPC [10], or OpenMP [11], to
assign independent, computations to different threads.
Hybrid use of MPI and OpenMP has been applied [12],
and a thread-compliant implementation of MPI sup-
porting MPI_THREAD MULTIPLE in LAM/Open MPI
has been developed [13]. Nevertheless, using multi-
threading under MPI to increase performance on every
MPI node in effect requires case-by-case manual han-
dling of an artificial computation sequencing problem
that does not even exist in the NavP program. NavP
does not have this problem because what a NavP pro-
grammer sees is a virtual multi-threading environment
on top of networked distributed memory machines.

5.2 Cache Performance

During the execution of a block fashion sequential ma-
trix multiplication program, an algorithmic block of C
is updated using the products of several pairs of algo-
rithmic blocks of A and B. This algorithmic block of C
stays in cache for different pairs of A and B algorithmic
blocks until it is fully updated.

By contrast, in our MPT implementation, since the
loop over all algorithmic blocks of C that a physical node
hosts updates all these blocks using the block pairs of A
and B arrived during the last phase of communication,
every triplet of A B C blocks are potentially fresh in
cache. This may lead to less efficient cache use.

In the NavP implementation, an ACarrier contin-
uously computes and contributes to the C algorithmic
blocks as long as the corresponding algorithmic blocks
of B are ready for use. One scenario of this is depicted
in Fig. 6 in which contributions to algorithmic blocks
c45, c46, and c47 are computed by the ACarrier of
a40 without stop. This results in similar cache perfor-
mance as the sequential execution because the A block
stays in cache during the process.

The following numbers provide an estimate of the
savings that can be achieved by better cache perfor-
mance. With matrix order of N = 6144, a block or-
der of 256, and a 3 X 3 network, on average, the MPI
code spent 0.334 seconds on each product of a pair of
256 x 256 blocks, whereas the NavP code spent 0.322
seconds. Applied to a total of 1,536 blocks on each PE,

the overall savings from a better cache performance of
NavP is 18.43 seconds. This is roughly a 4% improve-
ment from a total elapsed time of 510.29 seconds (refer
to Table 4).

To achieve better cache performance in the MPI
code, the program would need to hold an A block and
look for all corresponding B blocks that are ready to
compute. If no such B blocks are ready, there would
have to be a “context switch” to the next A block. This
would require a queuing mechanism, as described in
Sect. 5.1, to allow the program to later return to the
unfinished A blocks.

5.3 Initial Staggering

Fig.7 (a) An example in which forward staggering takes more
than two steps. N = 5 and position shift is 1. (b) An example in
which forward staggering can take three steps even if N is a power
of 2 (N = 8). The position shift is 3. Three steps if communication
in node pairs (0,5), (7,4), (6, 3) takes place in the first step.

[13

In the final NavP program listed in Fig. 5, “re-
verse staggering” is used for both matrices A and B.
That is, the “chain” of a row or a column is reverse-
ordered and shifted. An entry of matrix A on node
(i,j) is directly staggered to node T,(i,j), where
Ta(i,j) = (i,(N — 1 — j — i)%N). The staggering for B
is defined similarly: Tp(i,j) = (N —1—j — i)%N, j).

Assuming that a fully connected network and a
collision-free switch are available, the cost of initial
staggering for the A matrix in the NavP algorithm listed
in Fig. 5 is exactly two communication steps. This
can be seen by observing that Ty(T,(i,j)) = (4,]).
Hence the staggering consists of a collection of in-
dependent swaps of A values between pairs of nodes,
which can clearly be performed in two communication
steps. (Note that for odd N there are nodes for which
Ta(i,3) = (i,j); such nodes stagger their values for
free.) Similarly, the staggering for B can be performed
in two communication steps.

The staggering of Gentleman’s Algorithm is differ-
ent from that of the NavP code. Gentleman’s Algo-
rithm uses “forward staggering,” which shifts the posi-
tions of the entries without reversing the order. The



staggering formula for the A matrix in Gentleman’s
Algorithm is Ty(i,j) = (i,(j — 1)%N). This forward
staggering may require three communication steps, as
illustrated in Fig. 7(a). In general, unless N is a power
of two, there will be some row that requires three com-
munication steps. (Proof: if i is the highest power of
2 that divides N, then the directed graph representing
the forward staggering of row i will have an odd cy-
cle, and hence the staggering of this row will require
three communication steps.) Even when N is a power
of two, special care must be taken for forward stagger-
ing to avoid wasting a communication step, as shown
in Fig. 7(b). In our implementation of Gentleman’s
Algorithm, we do not have this mechanism in place.

Initial staggering in Cannon’s Algorithm [14]
moves the A entries east and the B entries south. While
the staggering may look the same as NavP, it is different
because the sequence of matrix entries is not reversed.
The cost of initial staggering in Cannon’s Algorithm is
exactly the same as that of Gentleman’s Algorithm.

The reverse staggering of our NavP algorithm,
which is always as good as that of Gentleman’s Al-
gorithm and usually better, was not arrived at by ac-
cident. It is a direct result of our NavP methodology
and our strict systematical application of the three code
transformations that incrementally develop a parallel
program from the sequential program. Of course, mod-
ifying the MPI algorithm to use reverse staggering is
quite easy, unlike the fine tuning for improving com-
munication overhead and cache performance discussed
earlier in this section.

6. Final Remarks

We have shown that systematic application of NavP
transformations yield a series of programs, each an im-
provement on the previous one, that constitute an in-
cremental path from sequential matrix multiplication
to a completely parallel version. The transformations
are mechanical and straightforward to apply.

Our NavP matrix multiplication implementation is
faster than our MPI code, as seen in Sect. 4. This is
mainly because the NavP code successfully hides some
of the communication overhead using an efficient but
transparent run-time scheduling. This task scheduling
functionality is factored out from the application code
under the NavP view and put into the MESSENGERS
daemon. Although it is entirely possible to achieve
better task scheduling in the MPI code, with the MPI
environment available today, the code that implements
this would have to be developed separately for each ap-
plication and interleaved with the application code. In
this sense, message passing is harder to use than NavP.

Our performance numbers indicate that NavP is a
promising approach, not only in terms of its simplicity
but also in terms of the efficiency of the final program.
Nevertheless, many questions and open research prob-
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lems remain. The applicability of our method to other
numerical problems, and its scalability on larger net-
works need to be assessed. Another key question is how
well our method can handle irregular computations and
problems on sparse matrices. Finally, the mechanical
nature of our NavP transformations suggests that they
are at least partially automatable. Building tools to
perform this automation is part of our future work.
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